ANAC032 regulates root growth through the MYB30 gene regulatory network.

Hiromasa Maki, Satomi Sakaoka, Tomotaka Itaya, Takamasa Suzuki, Kaho Mabuchi, Takashi Amabe, Nobutaka Suzuki, Tetsuya Higashiyama, Yasuomi Tada, Tsuyoshi Nakagawa, Atsushi Morikami, Hironaka Tsukagoshi

Reactive oxygen species (ROS) play important roles as root growth regulators. We previously reported a comprehensive transcriptomic atlas, which we named ROS-map, that revealed ROS-responsible genes in Arabidopsis root tips. By using ROS-map, we have characterised an early ROS response key transcription factor, MYB30, as a regulator of root cell elongation under ROS signals. However, there are other ROS-responsible transcription factors which have the potential to regulate root growth. In the present study, we characterised the function of another early ROS-responsible transcription factor, ANAC032, that was selected from ROS-map. Overexpression of ANAC032 fused with the transcriptional activation domain, VP16, inhibited root growth, especially decreasing cell elongation. By transcriptome analysis, we revealed that ANAC032 regulated many stress-responsible genes in the roots. Intriguingly, ANAC032 upregulated MYB30 and its target genes. The upregulation of MYB30 target genes was completely abolished in the ANAC032-VP16x2 OX and ANAC032 estradiol-inducible line in myb30-2 mutants. Moreover, root growth inhibition was alleviated in ANAC032-OX in myb30-2 mutants. Overall, we characterised an upstream transcription factor, ANAC032, of the MYB30 transcriptional cascade which is a key regulator for root cell elongation under ROS signalling.