A glial K+/Cl- cotransporter modifies temperature-evoked dynamics in Caenorhabditis elegans sensory neurons
K+/Cl- cotransporters (KCCs) are known to be crucial in the control of neuronal electrochemical Cl- gradient. However, the role of these proteins in glial cells remains largely unexplored despite a number of studies showing expression of KCC proteins in glial cells of many species. Here, we show that the Caenorhabditis elegans K+/Cl- cotransporter KCC-3 is expressed in glial-like cells and regulates the thermosensory behavior through modifying temperature-evoked activity of a thermosensory neuron. Mutations in the kcc-3 gene were isolated from a genetic screen for mutants defective in thermotaxis. KCC-3 is expressed and functions in the amphid sheath glia that ensheathes the AFD neuron, a major thermosensory neuron known to be required for thermotaxis. A genetic analysis indicated that the regulation of the thermosensory behavior by KCC-3 is mediated through AFD, and we further show that KCC-3 in the amphid sheath glia regulates the dynamics of the AFD activity. Our results show a novel mechanism by which the glial KCC-3 protein non-cell autonomously modifies the stimulus-evoked activity of a sensory neuron and highlights the functional importance of glial KCC proteins in modulating the dynamics of a neural circuitry to control an animal behavior.